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The Ni-catalyzed coupling of allyl chlorides and enynes has

been developed; the cyclization of enynes was triggered by the

addition of p-allylnickel species to the alkyne part, followed by

the incorporation of the alkene part.

There is considerable interest in transition metal-catalyzed

reactions due to their wide applications in organic synthesis. The

development of catalytic, sequential, multi-component reactions is

a particularly important subject.1 In our research and development

of new organonickel chemistry, we have discovered Ni-catalyzed

sequential C–C bond-forming reactions.2 We describe here a new

Ni-catalyzed coupling of allyl halides 1 with enynes 2. The

cyclization of 2 is triggered by the addition of p-allylnickel species

to the alkyne part, followed by the incorporation of the alkene

part.3–5 The generated exo- or endo-cyclic intermediate should

undergo b-hydrogen elimination to give the corresponding cyclic

product (Scheme 1).

Initially, an enyne 2a was treated with allyl chloride (1a: X 5 Cl,

2 equiv. vs. 2a) in the presence of Ni(cod)2 (10 mol%), PPh3

(20 mol%) and Zn powder (200 mol%) in MeCN at room

temperature. After 4 h, 2a was completely consumed and the

coupling product 3aa was obtained along with 4a,6 which was

derived from the cycloisomerization of 2a without the incorpora-

tion of an allyl unit (run 1 in Table 1). After some investigation, we

found that the use of an excess amount of 1a (ca. 10 equiv.)

improved the product ratio of 3aa to 4a (run 3 in Table 1).{
Product 3aa was determined to have a Z-geometry by a NOESY

experiment. This indicates that the reaction proceeded via the syn-

addition of the p-allylnickel species to the alkyne part of 2a,

followed by 5-exo-cyclization. Neither PPh3 nor Zn could be

omitted from the reaction (runs 4 and 5 in Table 1). The addition

of Et3N promoted the formation of the allylic alkynylation

product 5aa rather than the desired cyclic product 3aa (run 6 in

Table 1). In the reaction, b-hydrogen elimination of the exo-cyclic

intermediate provided 3aa, along with the release of H–Ni–Cl.

Zinc powder reduces this species, due to the regeneration of the

Ni0 species.7 The choice of X in 1 is essential for the reaction. Allyl

bromide (1: X 5 Br) was not suitable for the cyclization reaction

(run 7 in Table 1) since an allylzinc reagent was derived from the

reaction with Zn.8,9 The use of acetate (X 5 OAc) and carbonate

(X 5 OCO2Me) caused the formation of 5aa (runs 8 and 9 in

Table 1).10

Using the optimized reaction conditions, we examined the Ni-

catalyzed sequential coupling of some enynes 2 (Table 2). The

reaction with b-methallyl chloride (1b) provided 3ba in moderate

yield (entry 1 in Table 2). A malononitrile derivative 2b also

reacted with 1a to give the corresponding 3ab in 45% yield (entry 2

in Table 2). In the reaction with 2c, the obtained 3ac was a mixture

of ethylidene- and vinyl-substituted cyclopentanes (entry 3 in

Table 2). These isomers were derived by the elimination of Ha and

Hb atoms, respectively, from the corresponding 5-exo-cyclic

intermediate. The reaction with 2d afforded a vinyl-substituted

cyclopentane 3ad (entry 4 in Table 2). A cyclohexene-substituted

enyne 2e also reacted with 1a to give an alkylidene-substituted

bicyclic product 3ae (entry 5 in Table 2).

When 2f was treated with 1a in the presence of the catalytic

system, a six-membered cyclic product 6af was obtained, along

with a five-membered cyclic 3af (eqn. (1)). In the reaction, the

stereochemistry of 6af could not be determined. On the other

hand, the reaction with 2g, which has a methyl group at the vinyl

position, gave the corresponding 6ag in 73% yield as the sole

product (Scheme 2). The product was determined to have an

E-geometry by a NOESY experiment. If the reaction proceeded

via 6-endo-cyclization (see the ‘‘endo-cycle’’ depicted in Scheme 1),

(Z)-6ag would be obtained. Inversion of the configuration can be

explained by a process that involves the formation of 5-exo-

cyclized 7, followed by cyclopropanation leading to 8, which then

undergoes b-carbon elimination to produce 9.11 Although 8 has
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Scheme 1 The concept of Ni-promoted sequential C–C bond formation.
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b-hydrogen atoms (depicted in bold in Scheme 2), the product that

would result from b-hydrogen elimination was not observed. The

conversion to 9, with a relief of ring strain in the cyclopropane part

of 8, would be a more favorable process than b-hydrogen

elimination.12 Finally, b-hydrogen elimination at the allylic

position of 9 led to (E)-6ag. The reaction proceeds via a domino

process with the formation of three C–C bonds and the cleavage of

one C–C bond.

In summary, we have demonstrated a Ni-catalyzed coupling of

allyl chlorides and enynes. The reaction proceeds via the addition

of the p-allylnickel species to the alkyne part, followed by the

incorporation of the alkene part to generate the exo-cyclic

intermediate. Sequential b-hydrogen elimination led to the

formation of 3. On the other hand, an intermediate such as 7,

which does not have any b-hydrogen atoms, underwent

Table 1 The reaction of 1a with 2aa

Run

1a Additives

Time/h

Yield (%)d

X Equiv. PPh3
b Znc Et3Nc 3aa 4a 5aa

1 Cl 2 Yes Yes No 4 (41) (34) 0
2 Cl 6 Yes Yes No 4 (62) (10) 0
3 Cl 10 Yes Yes No 4 75 Trace 0
4 Cl 10 No Yes No 24 0 0 0
5 Cl 10 Yes No No 24 0 0 0
6 Cl 10 Yes Yes Yes 2 Trace 0 68
7 Br 10 Yes Yes No 2 (26) (15) 0
8 OAc 10 Yes Yes No 24 (15) 0 (35)
9 OCO2Me 10 Yes Yes No 2 0 0 88
a Conditions: Ni(cod)2 (10 mol%) in MeCN at room temperature. b Yes: 20 mol% addition; No: no addition. c Yes: 200 mol% addition; No:
no addition. d Isolated yield. NMR yields are in parentheses.

Table 2 The reaction of 1 with 2a

Entry 2b Product (S) Yield (%)c

1d 41

2 45

3 64

4 65

5 70

a Conditions: 1a (R 5 H, 5 mmol), 2 (0.5 mmol), Ni(cod)2

(10 mol%), PPh3 (20 mol%), Zn (200 mol%) in MeCN (3 mL) at rt
for 4 h. b E 5 CO2Et, E9 5 CO2Me. c Isolated yield. d The reaction
was carried out with 1b (R 5 Me) instead of 1a. e Determined by 1H
NMR.

Scheme 2 Domino coupling of 1a (X 5 Cl) with 2g via the formation of

three C–C bonds and the cleavage of one C–C bond.
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cyclopropanation, followed by b-carbon elimination to lead to the

formation of 6. Further studies are in progress in our laboratory.

This work was partly supported by a Grant-in-Aid for Scientific

Research from the Japan Society for the Promotion of Science.
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